应我校数学与信息科学学院微分方程与可积系统团队邀请,西南财经大学数学学院王永富教授做“Compressible viscous non-isentropic flows without heat-conductivity”学术报告。具体事宜如下:
报告题目:Compressible viscous non-isentropic flows without heat-conductivity
报 告 人:王永富
工作单位:西南财经大学
报告时间:2023.5.17 14:30-15:30
会议地点:腾讯会议846 181 803
报告摘要:
The talk is concerned with generally symmetric hyperbolic-parabolic systems with Korteweg-type dispersion. Referring to those classical efforts, we formulate new structural conditions for the Korteweg-type dispersion and develop the dissipative mechanism of “regularity-gain type”. As an application, it is checked that several concrete model systems (e.g., the compressible Navier-Stokes (-Fourier)-Korteweg equations) satisfy the general structural conditions.
报告人简介:
王永富,西南财经大学数学学院教授,博导。研究方向是非线性偏微分方程理论与应用,主要研究兴趣为高维Navier-Stokes方程组强解的适定性和理想流体的自由边界问题。在Arch. Rational Mech. Anal.、Calc. Var. PDEs、SIAM Math. Anal.、Ann. Inst. Non Linéaire、J. Differential Equations、J. Lond. Math. Soc. 等国际著名学术刊物发表学术论文20余篇。主持国家自然科学基金青年和面上项目各1项。