基本信息:
王艳青, 男,博士、副教授。联系方式:wangyanqing@zzuli.edu.cn
硕士生导师,中国数学会会员,CSIAM会员,美国《Mathematical Reviews》评论员。主要从事流体力学Navier-Stokes方程及相关方程(适当)弱解正则性和守恒量的数学研究,相关结果发表在Siam JMA、Nonlinearity、Phys. D 、JDE、JFAA、CCM、PJM、JMFM等期刊上。主持完成国家自然科学基金青年项目1项,目前主持在研国家自然科学基金面上项目1项和河南省优秀青年科学基金项目1项。参与省级一流课程《高等数学》建设,参与校级在线课程《复变函数与积分变换》建设。
教育背景:
2012.09--2015.06 博士 首都师范大学 应用数学
2009.09--2012.07 硕士 首都师范大学 应用数学
2005.09--2009.06 学士 河南大学 数学与应用数学
工作履历:
2022.01-至今 郑州轻工业大学 副教授
2015.06-2021.12 郑州轻工业大学 讲师
教授课程:
本科生课程:《高等数学》《复变函数与积分变换》
研究生课程:《偏微分方程》《椭圆与抛物方程》
荣誉和奖励:
1、第四届全国高校数学微课程教学设计竞赛,华中赛区二等奖、河南赛区一等奖1项;1/1,2018.
2、河南省教育厅优秀科技论文奖一等奖,1/1,2022.
主持或参加项目:
1.国家自然科学基金青年项目,11601492,不可压缩磁流体方程弱解的研究,2017.1—2019.12,18万元,结项,主持.
2.国家自然科学基金面上项目,11971446,不可压缩Navier-Stokes 方程适当弱解的研究,2020.1—2023.12,50万元,在研,主持.
3. 国家自然科学基金面上项目,12071113,不可压缩Navier-Stokes方程解的正则性, 2021.1—2024.12,51万元,在研,第二.
4. 河南省自然科学优秀青年项目,232300421077,Navier-Stokes 方程和 Euler 方程解的正则性与能量守恒,项目批准号:2023.1—2025.12,25万元,主持.
代表性论文(*为通讯作者)
[1] Wang, Yanqing; Wu, Gang*. Fractal dimension of potential singular points set in the Navier–Stokes equations under supercritical regularity. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, (2023)
[2] Wang, Yanqing*; Otto, Chkhetiani. Four-thirds law of energy and magnetic helicity in electron and Hall magnetohydrodynamic fluids. Phys. D 454 (2023), Paper No. 133835.
[3] Wei, Wei; Wang, Yanqing*; Ye, Yulin. Gagliardo-Nirenberg inequalities in Lorentz type spaces. J. Fourier Anal. Appl. 29 (2023), no. 3, Paper No. 35, 30 pp.
[4] Liu, Jitao; Wang, Yanqing*; Ye, Yulin. Energy conservation of weak solutions for the incompressible Euler equations via vorticity. J. Differential Equations 372 (2023), 254–279.
[5] Wang, Yanqing; Ye, Yulin; Yu, Huan*.Energy Conservation for the Generalized Surface Quasi-geostrophic Equation. J. Math. Fluid Mech. 25 (2023), no. 3, 70. 35.
[6] Wang, Yanqing; Ye, Yulin*; Yu, Huan. The role of density in the energy conservation for the isentropic compressible Euler equations. J. Math. Phys. 64 (2023), no. 6, Paper No. 061504, 16 pp.
[7] Ye, Yulin; Guo, Peixian;Wang, Yanqing*. Energy conservation of the compressible Euler equations and the Navier-Stokes equations via the gradient. Nonlinear Anal. 230 (2023), Paper No. 113219, 18 pp.
[8] Wang, Yanqing; Jiu, Quansen; Wei, Wei*. Leray's backward self-similar solutions to the 3D Navier-Stokes equations in Morrey spaces. SIAM J. Math. Anal. 54 (2022), no. 3, 2768–2791.
[9] Ye, Yuli; Wang, Yanqing*, WeiWei. Energy equality in the isentropic compressible Navier-Stokes equations allowing vacuum. J. Differential Equations. 338 (2022), 551–571.
[10] Wang, Yanqing*; Mei, Xue; Huang, Yike .Energy equality of the 3D Navier-Stokes equations and generalized Newtonian equations. J. Math. Fluid Mech. 24 (2022), no. 3, Paper No. 65, 10 pp.
[11] Wang, Yanqing; Wei, Wei*; Wu, Gang; Ye, Yulin. On continuation criteria for the full compressible Navier-Stokes equations in Lorentz spaces. Acta Math. Sci. Ser. B (Engl. Ed.) 42 (2022), no. 2, 671–689.
[12] Wang, Yanqing; Wei, Wei*; Yu, Huan. ε-regularity criteria for the 3D Navier-Stokes equations in Lorentz spaces. J. Evol. Equ. 21 (2021), no. 2, 1627–1650.
[13] Ji, Xiang; Wang, Yanqing*; Wei, Wei. New regularity criteria based on pressure or gradient of velocity in Lorentz spaces for the 3D Navier-Stokes equations. J. Math. Fluid Mech. 22 (2020), no. 1, Paper No. 13, 8 pp.
[14] Wang, Yanqing; Wu, Gang; Zhou, Daoguo*. A regularity criterion at one scale without pressure for suitable weak solutions to the Navier-Stokes equations. J. Differential Equations 267 (2019), no. 8, 4673–4704.
[15] He, Cheng; Wang, Yanqing*; Zhou, Daoguo. New ε-Regularity Criteria of Suitable Weak Solutions of the 3D Navier–Stokes Equations at One Scale. J. Nonlinear Sci. 29 (2019), no. 6, 2681–2698.
[16] Wang, Yanqing*; Wu, Gang.On the box-counting dimension of the potential singular set for suitable weak solutions to the 3D Navier-Stokes equations. Nonlinearity 30 (2017), no. 5, 1762–1772.
[17] Ren, Wei; Wang, Yanqing*; Wu, Gang. Partial regularity of suitable weak solutions to the multi-dimensional generalized magnetohydrodynamics equations. Commun. Contemp. Math. 18 (2016), no. 6, 1650018, 38 pp.
[18] Jiu, Quansen; Wang, Yanqing*; Wu, Gang. Partial regularity of the suitable weak solutions to the multi-dimensional incompressible Boussinesq equations.J. Dynam. Differential Equations 28 (2016), no. 2, 567–591.
[19] Wang, Yanqing*; Wu, Gang. A unified proof on the partial regularity for suitable weak solutions of non-stationary and stationary Navier–Stokes equations. J. DifferentialEquations 256 (2014)1224–1249.
[20] Jiu, Quansen; Wang, Yanqing*. On possible time singular points and eventual regularity ofweak solutions to the fractional Navier-Stokes equations. Dynamics of PDE, 11(2014), No.4, 321–343.